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ABSTRACT

A theory is presented which permits the study of the effects of horizontal winds
on the dispersion and amplitudes of acoustic-gravity waves in the atmosphere.

It is shown that the effective horizontal group velocity for a given frequency in

a given normal mode depends on direction of propagation as well as on frequency
and tha. it is not necessarily in the same direction as the horizoatal wave num-
ber vector. A number of useful integral theorems are derived from a variational
principle and one is subsequently applied to the development of a perturbation
method for ¢" ¢ computation of wind effects on dispersion. Application of the
method to a realistic example indicates that winds car appreciably alter the dis-
persion of the normal modes and that they should be considered in any quantita-
tive interpretation of experimental microbarograms.
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Figure 1

ILLUSTRATION

Characteristic frequencies wg,w;, and wy; versus

horizontal wave number k for a layer with sound

speed c,, wind velocity ¥;, and scale height H,,

In (a), it is assumed that k¥, = (1/3) kc, ; while in :
(), it is assumed that k- L -(ll3)kc, cececirencscseescrse 15

(a) Approximate variation of parameter - q,with

angular frequency for the fundamental mode., The

dots represent values computed using profiles of

kinetic energy computed by Pfeffer and Zarichay.

() Plot of - (+0)2 versus period (27/w) derived

from the grapg in (t) and the group velocity curves

computed by Pfeffer and Zarichny. Here q,

represents the derivative of ¢ with respect to «.

Note that both ¢ and q; are negative ....ccoevvececncsosss 25

The net perturbed group velocity as observed

on a line making angles 9 = 0°, 90°, 180°, and

270° with the eastward direction versus period

insoconds c.ceornccnntaiaieatitsrertisesecetsserrccases 26




Latin

by, Ky
k, (w, ok)

k0 (w)

Po

Q‘. QV

. &

Y

»
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NOMENCLATURE

speed of sound, (yp,,/p‘,)”2

speed of sound in bigh altitude layer
unit vector in eastward direction
unit vector in vertical direction
function characterizing source time dependence
acceleration of gravity

Fourier transform of f(r)

horizontal wave number vector
magnitude of k

components of k

eigenvalue of rezidual equations
eigenvalue in absence of winds
index for normal modes

deviation of pressure from ambient

ambient pressure

vector wind correction to horizontal wave number

components of q
derivatives of i (e and g (o)
position of abserver

position of source
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Latin

(2%

vgx+ ¥

sil* "el
" (w)

®Y

[ 34

NOMENCLATURE (Concl'd)

time relative to excitation of the source
deviation of particle velocity from ambient
ambient wind velocity

ambient wind velocity in high altitude layer
weighted average of wind velocity
horizontal group velocity

magnitude of :8

components of #.

group velocity of nth normal mode
componenta of ¥, parallel and perpendicular to wind direction
group velocity in absence of winds

vertical component ofuf

herizontal coordinates

altitude

source altitude

lower boundary for high altitude layer
characteristic atmospheric parameter
value of A in high altituda layer

relative amplitude of nth normal mede
coeificients in residual equations

constant indepondent of 2
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Iy 1y
K

P, w)
P*(1, w)

Ph

Vin

NOMENCLATURE (Concl'd)

d/dt++.V, time derivative following wind

time dependent amplitude of normal mode wave
scale height

characteristic integrals

constant

factor in Fourier transform of p

complex conjugate of P (7, w)

phase of compler rnumber

factor of A,

magnitude of horizontal projection of r -7,

real part

functions of k characteristic of high altitude layer
Wronskian

solutions of residual eguations

solutions satisfying lower hundary « ondition

solutions satisfying up_pér boundary condition

eigenfunctio:: pair satisfying both boundary conditions

function characterizing high altitude layer
phase factor of atk aormal mods

ratio of specific keats of air
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NOMENCLATURE (Councl'd)

Greek

] phase of g(w)

8A, 54 ,, etc. small variations in A, Ayy etc

‘ 0 or /2 depending on sign of & 8/9 «?

) angle between horizontal projection of f-r, and x-axis
8, iz) angle between v and x-axis

0 angle between k and x-axis

Bq (@ O saddie point for & integration

) deviation of density from ambient

Pq ambieni density

o focusing factor ifz notr:nal mode wave amplitude

@ angular frequency

wy, @), ec.  characteristic frequencies of bigh altitude layer

w; (8, ¢/Ry)  frequency arriving at timet

“g Vaisala-Brunt frequency
I .
wpe  tr=-b1? pe,
“Am 172y /¢y
S YR P integrals characterizing variations in 2 and ¥
®, normalized contribution to waveform
Q - lovg




I. INTRODUCTION

Previous attempts to explain the features of the microbarograms of infrasonic
waves recorded following nuclear explosionsl -7 and natural atmospheric explo-
sions 8: 9 have for the most part been restricted to atmospheric models with no
ambient winds. To what extent this neglect of winds is justified is not entirely
clear, Diamondl0 has recently discussed their effect on the appar~nt sound-
speed profile above White Sands and has exhibited data which would seem to
indicate that typical winds are of sufficient strength to have an appreciable ef-
fect on sound propagation.

A noteworthy beginning in the development of a theory which considers the ef-
fects of winds was made by Weston and vanHulsteyn!! who showed that the
linearized equations of hydrodynamics are still separable if the winds are hori-
zontal and vary in direction and magnitude only with aititude. They also indi-
cated how one might calculate the variation of the horizontal phase velocity with
frequency for fixed direction of the horizontal propagation vector k.

Pridmore-Brown!2 also derived the general lirearized equations for sound
propagation in an atmosphere with arbitrary sound-speed profile and horizontal-
wind profile. In some respects, his theory went further than that of Weston and
vanHulsteyn, in that it dealt with waves from a point source rather than with free
waves (whose wavetronts are vertical planes). However, Pridmore-Brown con-
sidered orly the steady state case as he waz not concerned with dispersion
phenomena, Furthermore, since he was interested in sonic frequencies of the
order of 100 cps (as opposed to infrasonic frequencies of the order of 10-< cps),
he was enabled to make 2 number of approximations which cannot be justified

for lower frequencies.

In the present paper, the theories of Weston and vanhulsteyn and of Pridmore-
Brown are extended to the ccnsideration of the propagation of infrasoric waves
from an idealized point source characterized by an arbitrary time variationf (1),
The expressions derived for the pressure on the ground at a large distance from
the source represent an extension of the method of normal modes to the propa-
gation of infrascnic waves from a point source in the presence of horizontal
winds, Our derivation of these expressions is similar to that of Pridmore-
Brown and is therefore given as briefly as possible. One substantial departure
from PridmoreeBrown's method appears in the method ot treating the twoefuld
integration over the components of the horizontal wave number. [t is our opinton
that the .na‘hematical approximation utilized by Pridmore-Brown as indicated

by Eqn. (22) in his paper is not justified. His approximation would indicate that
the horizental wave vector points racially from the source and hence in the same
direction a3 the v oup velocity. The theory presented in this paper indicates
that this is not the case in general and gives a method of computing the angular
deviation of ths horizontal wave vector from the dircction f the horizontal groop
veloctly.




The implementation of the theory rests on the solution of two coupled first
order differential equations, which represent generalizations of the resid
equations discussed by Eckart. 13 with appropriate boundary conditions (whose
rationale we discuss) these are eigenvalue equations fur the magnitude of the
horizontal propagation vector k. The eigenvalues k will depend on the direction
of k when winds are included as well as on the frequency and the mode index n.
The theory presented in sections IV and V shows how the group velocity may be
calculated from a knowledge of the partial derivatives of the eigenvalues with
respect to frequency and angle of wave normal to a given horizontal direction.

In section VI we introduce a variational technique which leads to a number of
integral theoremsa rclating the eigenfunctions of the residual equations and their
eigenvalues. In particular, the theorems give methods of computing the partial
derivatives of the eigenvalues from a knowledge of the eigenfunctions for a single
choice of parameters and therefore eliminates numerical differentiation. An
integral expression for the group velocity is then easily obtained.

In section Vil we discuss the caae of propagation in an isotherrnal atmosphere
with constant winds. This is a particularly simple case and one which should
be carefully studied before proceeding on to more complicated model atnios-
pheres. Our anzlysis shows that both the surfaces of constant phase and con-
stant arrival time are circles whose centers move with the winc¢ velocity and
whose radii increase at the sound speed.

In section VIII we use one of the integral theorems derived in section VI to de-
velop a perturbation method for taking winds into consideration. Thi3s method
makes calculations of dispersion effects of winds highly feasible an? requires
only that the wind independent eigenfunctions be known, These, however, have
been explicitly or implicitly obtained by all previous writers who have com-
puted horizontal phase and group velocities for wind independent mcdel atmos-
pheres. As an example, we make use of the computztional results of Pfeffer
and ZarichnyS io find the effects of a wind profile exhibited by Diamond!0 on
the dispersion of the fundamental mode.




II. FORMAL SOLUTION OF THE LINEARIZED
EQUATIONS OF HYDRODYNAMICS

The atmosphere is assumed to be an ideal gas which obeys the equations of
hydrodynamics. The ambient variables p,. p,. and ¥ are assumed to satisfy
these equations in the absence of any external perturbation. The winds are
assumed horizontal and independent of the horizontal coordinates » and y and of
time t. The linearized equations of hydrodynamics as derived by Pridmore-
Brown will therefore govern the spatial and temporal variations of the first

order quantities p,p, and i. In a somewhat altered notation, these equations
are

D, (p i) + pywd¥/dz = - Vp - gpd, . 2. 1
D + V- (p,B) = 4rf(@ 8@ -7) (2.2)
Dp - wigp, + c2¢p,/dz) = <IDyp (2.3)

The term on the right-hand side of Eqrn. (2. 2) has been included to take into
account the presence of a source at the point7,. The function f(r) is to be
chosen such that the linearized equations predict as accurately as possibie the
known properties of the acoustic field in the near vicinity of the source. A
direct intepretation of f(t} may be obtained by integrating both sides of (2.2)
over the volume of a small sphere of radius R, Upon applying the divergence
theorem, one finds in the limit of sufficiently small R that

/poﬁ'gdazénf(t) (2. 4)

S

where n is the unit normal to the surface > of the sphere of radius R, The
integral on the left may be interpreted as the mass expelled from the interior
of the sphere per unit time, (This assumes that negligible mass has been added
to the air by the explosion itself.)

A formal solution of the linearized equationg may be obtained by use of Fourier
transforms. Using this method, one finds the vxcess pressure at a point ¢ at
time ¢ to be given by

L
pg(2)

P(?() » "-""""—- c-‘mp('_t,n)‘{c.ddla.o (2° ")
po! (1)




where g{ow) is the Fourier transforni of f(t) , such that

f(v) = / e ot g (w) dw . (2. 6)

and where P(i, w) may in turn be represented aa a*two—fold integral over the
components k;,k, of the horizontal wave number &,

- '-.' ?'? e
P(T,w) = u"l//dzke‘k‘ * °)2(z, z,,0,k) . (2.7)

The expression Z(z,z,, v, k) must satiefy a differential equation which may be
derived in the manner indicated by Weston and vanHulsteyn and by Pridmore-
Brown for the quantities II(z) and x(z) in their respective papers. The differ-
ential equation we find by this method is

¥E -1 {d
{(;— ) A1 (;;+ A) - AZI} Z = - (i/0) Mz - z,)° (2.8)

where
2 2
Ap = ¥ - g, (2.9
Ay = /WP ~ 2, (2. 10)
A= Q=-12yg/ - 2cHt dc/az (2.11)
2
wg = (y~1) ‘2/'c2 + (;/cz) dc/dz (2. 12)

and Q=w-k-¥. Both A and wg (Vaisala-Brunt frequency) are functions of z which
characterize the ambient atmosphere. A somewhat more convenient represen«

tation of Eqn. (2.8) is that of two coupled first order differential equations, i.e.,

dY/dl - AY - AZlZ - ‘(i/ﬂ)&!-zo) (2. 133)

dZ/dz + AZ - A Y & 0. (2.13b)

The utility of taking the equations in this form has been demonstrated by Eckart
Following Eckart, we shall refer to these two coupied equations as the residual

13

equations. The second of th2ee may be considered as the definition of the auxili-

ary function Y (2, 2, «. k) .

+ 4.
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The delta function on the right-hand side of Eqns. (2.8) and (2.13a) reflects
the presence of the source at altitude z, and requires there be a discontinuity
in Y and dZ/dz at z=2z, .

Boundary conditions on the set of coupled equations (2.13) are chosen tc insure
that w, the vertical component of particle velocity, be zero at the Earth's sur-
face and are chosen to insure that the total solution (2. 5) conforms to causality.
The former requirement leads to the condition Y=0at 2z=0. (The derivation of
this condition is similar to Weston and vanHulsteyn's derivation” of d x/dz=0
atz=0.) The causality requirement has been shown by the author!? to be satis-
fied if Z(z, z,, », k) for real ky» ky i8 an analytic function of w for all complex

w in the upper half plane and vanishes as « approaches i,

To relate this requirement to one governing the behavior of 7 and Y at large 2,

it is convenient to assumne that the properties of the uppermost region of the
atmosphere are such that the z-variation of Z and Y above some hcight z, may
be written do.vn explicitly. For this reason, we assume that the atmosphere

is isothermal above z; and therefore has a constant sound speed cp in the upper-
most region. The winds at this height will also be assumed to be constant in
magnitude and direction,

With this assumption as to the nature of the upper atmosphere, one may show
that the causality requircment requires that Z be of the form

Z = D ei%2 (2. 14)
for 2> 25, where D is independent of z and
' 2 2 2 i
a = {c-l;lz (931 - ©pm) ~ (ﬂm — @pp) (kz/ntzn)}
is a function of w, ky » and k.. Here ﬂm= w—;';m,mmn: (y/Z)g/cm y wgy = O = i)l";g/cm‘

where ¢ and 7,“ represent the ambient sound speed and wind velocity
in the isothermal layer,

To insure causality and the desired behavior of Z as a function of complex «,
one must require that a be an analytic function of win the upper half plane and
that it approach i~ as wapproaches :«. This requirement may then be used to
specify the phase of afor real «and k, giving

Ph(a) = 0 w ™ wy (2. 15a)
- /0 w; W (2. 15b)
- wp < w+ w) (2. 15c¢)
.0 Wy e g (2. 15d)

- 5.




Ph(a) = 7/2 w_y<w<w_) (2. 15¢)
= w < (0_2 (2. 15‘)

where the five characteristic frequencies are given by the folloviing expressions

0y b Tt 64T | (2. 16a)

O =k ¥y 2 (S~ n | ' (2. 16b)

wy = k¥ (2. 16¢)
with

S = Wiy + 22 (2.17a)

T = % - ol 2 (2. 17b)

The upper boundary condition on the solution of Eqns. (2.13) is therefore that
Z be of the form (2. 14) when > z, where the appropriate phase of a must be
determined from Eqns. (2.15) and (2. 16).

Following a method used previously by Haskelll3, we may formally write the
solurion for z(z, z, @ k) of Figns. (2.13) in terms of quantities Z;(2). Y;(z2) and
Z, (), Y, (2 which satisfy the homogeneous equations (i.e., Eqns. (2.13) with
the omission of the source termj. The set Z,;,Y; is defined as satisfying the
boundary condition Y; =0 atz=0, while the set Z, Y, is defined as satisfying
the upper boundary condition. In terms of these guantities, the solution for

Z of the inhomogeneous equations which satisfies both upper and lower boundary
conditions is given by

-12,(2) 2z

(2. 18)
Q(2) W (z;)

-
Z(z. 2, w, k) =

where z, and z, refer to the greater or lesser of z and z,, and the Wronskian
¥(z,) is defined to be

Virg) = ¥, (1) Z(rg) = 2, (zp) ¥ (x) (2.19)

One may show directly from the homogeneous form of Eqns, (2. 13) that the
Wronskian is independent of altitude. Thus, we may set

V(a,) - ¥(0) - ¥, (0)Z,(0) (2.20)

-6




where we have made use of the fact that Y (0 =0,

A more convenient expression for P(f, w) may now be obtained by inserting the
expression above for Z into Eqn. (2.7). Since observations of infrasonic waves
are usually made on the ground, we takez = 0 in the resulting expression. This
gives

2n o '
. _ ikRycos (8-
P(f,0) = - i/ / a8, / cac M FTO Ry ivoee)) 2y
0 0

Here the integration is expressed in cylindrical coordinates; 6, representing
the angle which k makes with the x-axis. The magnitude of the horizontal
projection of 7~ is abbreviated by Ry and the angle between this projection
and the x-axis is denoted Ly 4.

~3




I, THE METHOD OF NORMAL MODES

While, in principle, the order of integration in Eqn. (2.21) is immaterial,
great care should be exercised in choosing this order if one or both integra-
tions are to be performed approximately, The technique utilized by Pridmore-
Brown was to first integrate over ¢, using the saddle~point method and then to
integrate over k using the method of residues. In our opinion, this order of
integration leads to incorrect results since the saddle-point method is inappli-
cable if the saddle-point is close to a pole. This appears to be the case in
Pridmore-Brown's method, for, in utlizing the method of residues in the
integration over %, it is the behavior of the integrand necar its poles which is

of principle importance., This objection can be overcome if one first does an
integration over k using the method of residues and then does tle §, integration
using the saddle-point method, This is the program we follew here.

The path for the k integration in Eqn. (2.21) is first deformed to one which (in
the casge of « > 0) encloses all poles of the integrand in the first quadrant and
which incluces a contour going from the origin along the positive imaginary
axis as well as contours arouud branch lines, (All branch lines emanating from
branch points in the first quadrant are taken as extending vertically upwards. )
For large Ry, the predominant contribution to the total integral comes irom the
residues of those poles which lie on the real axis., The remaining terms may
be discarded, The integrand thus obtained for the 6, integration will consist of
a sum of terms, each representing the contribution from one of the poles in the
integration over k. Each term is integrated separately, and the saddle-point
approximation is assurned to be applicabre in each case, The saddle-point is
taken as that of

C!P l; kn R’[ COS(f) - Hk): (3. l)

where k; (o 9 ) is the location of the nth pole in the integrand prior to the
performance of the k -integration. (One should note that the saddle-point will
generally not be at 4 = 6#.) In general, the validity of the saddle-pcint method
may be expected to increase with increasing Ry, If no real saddle-peoint exicts
for any particular term we may assume the contribution from that term to be
negligible for large Ry relative to any other term with a real saddle -point,

The resulting expression for (¢, ) appropriate for large Ky appears as a sum
over normal modes in the form

\ iRy -
pif, . - E A"Rfl' ,.'fl'l l (3, 2)

1]




Both the phase factor 8, and the amplitude factor A, for each normal mnde are
functions of w and 6, but not of Ry.

The method for obtaining the quantities A, and g, follows from our preceding
remarks concerning the procedure for deriving Eqn. (3.2). For v >0, let
k,(w,6,) be a real positive root of

(2, Y,(0)

P Se——

le (ZO)

(3. 3)

where n = 1,2,3,,,., is an index distinguishing the roots, The labelling is
chosen such that k, is piecewise continuous in # and ». Then, let 6 (0,0 )
be the saddle-point of the expression (3.1), or, equivalently, a root of

d
—  lky(w, Q) cos (6 - O =0 (3. 4)
a6,

Foxr weak winds (which is the case of physical interest) it should be required
that |6, - 60| is less than »/2 in the event that one need distinguish among
multimple roots of Eqr. (3.4)

Interms of k = &, (w, 6, )and 6 = 6, (v,0 ), one may set

By = kcos (G - v (3.5}

A, - 22/} /2 Qkemin/d (3.6)
where

-1 2y / (3.7)

Qe - ¢ Qz,) Y, (0)/Z, (7)1} .

Y
- — tk, (w, B cos (8 ~ #)]
a6
To compute (i, and A, for given . and ¢, one first determines the appropriate
values of # and k and uses these in the above expressions, The differentia-~
tion in Eqn. (3.7) is carried out at constant &, , while that in (. 8) is cazried
nut at constant #, (A more convenient expression for ) is given by Eqn. (6. 14).)

(3.8)

S
#

It is not necessary to consider the casc .. 0Oseparately, since the {act that
bothf(t) arip(i,t)are real implics

P(f.o) = Poed, - ud (}.7)




and therefore implies
Ay(w,0) = Ay(~w,0)° (3.10a)

By (@) = ~B,(~w) (3. 10b)

(It may be assumed that 8, is real, since we are limiiing ourselves to undamp-
ed modes. )

The surfaces of constant phase for given » and rmode number a are determined
by the condition that S, Rt in the exponent of Eqn, (3.2) be constant, or

R = —ek (3.11)
7 (@, 6)

where K is a constant, The normal to such a surface at a given value of 9
makes an angle

-1 p-1

with the x-axis, It is readily shown from Eqns. (3.4),* (3.5), and (3.11) that
this angle is identical with 6 (., ). Thus the vector k is perpendicular to the
surfaces of consiant phase.




IV, GROUP VELOCITY

The expression (2, 5) for the pressure on the ground as a function of time may
be rewritten using the approximation (3, 2) in the form

pr. g = E pf,"z (@ p;"/z(z‘,) %, Ry, 6,0 (4.1)

where

. H R
®, Ry, 6,0) = Rf”zz Re /e"'”‘" slw) A, (@, o)e'ﬁ" T e (4. 2)

o

represents the ncrmalized contribution to the total waveform from the nth
normal mode, Although the integration limits are written as 0 and ~, it must
be borne in mind that, generally, the solution to Eqn. (3. 3) corresponding to
the nth normal mode will exist only for a limited range of w. There may be
either an upper or a lower cutoff frequency - or possibly both, It is conceivable
that the mode may also have a number of frequency gaps, for which the mode
does not exist. To allow for such situations, we adopt the convention that the

Ap (@, 6) should be considered as zero whenever there is no corresponding root
of Eqn, (3. 3).

The traditional mzthod of evaluating the integral in Eqn. (4.2) is the method of
stationary phasel®. Although the method in its unmodified form has limited
applicability to acoustic-gravity waves, the modifications devised by Scorer?
and by Wegton? may geverally be incorporated to make the method a valid
approximation for the computation of the waveform at distances greater than
5000 krm from the source. For manv qualitative aspects of the interpretation
of the waveforms, the unmodified method appears to be satisfactory. In this
paper we restric: ourselves to the traditional method. A direct application
gives

®, (Ry. 0.0 - wy! E Gifh o) eon | Pu, Ry = ot s Blap o] (4. 3)
i
where
. P2 .
Jid=y (o} Aiw, &)
Gl ) = e B (4. 4)

foofp act gt ?

« 4.




and . - w; (8, ¢/Ry) is a root of

i
98 (v, Ndw - t/Rp (4.5)

(The subscript n is omitted for brevity,) The sum in (4. 3) extends over all
~ such roots if more than one exists, The quantity 5 is the phase of g{«) and
the parameter ¢ is » /2 or 0, depending on whether & 8 /3w? is positive or
negative, respectively,

The concept of group velocity is derived from. the method of stationary phase.
The time ¢ obtained from Eqn, (4.5) represents the time relative to the excit-
ation of the sourc : at which a wave of frequenc; « in the nth normal mode
arrives at a point described by the coordinates Ry, 9 . Thus, we may consider
the magnitude of the horizoutal group velocity as being given by

gl 0 = [3p/9wi -1 (4. 6)

Since we are assumung that the medium does not vary in the x ory directions,
it must be assumed that the group velocity is in a radial directica away from
the source (i1, e,, in a direction making an angle of 6with the x-axis).

In terms of the parameter % which dezcribes the direction of the horizontal
wave vector k with respect to the x-axis, the components v,z and v, of the
horizontal group velocity are given by the expressions:

cos 8 + k7! (sin 85 (@, /9 &)
v . n n 0k (4‘ Ta)
&x {(d kn;’a w)

i -1 .

:nn.@k-»k (cos%)(r_)k.d )
. ; , a9 % (4. Tb)
BY (oky dw)

where, in evaluating the partial derivatives. k,(w 4 ) i3 as found from Eqn.
(3 3).

The proof of Eqns. (4. 7) follows from Equs. (3, 4) and {3.5), which give

oan mk -t - k! &ha-"‘}&g

h
Ak A - fees (B o~ A1 GH W
kA teee (R LR

{Note that the magnitude of ¢ 5,4 « is the same regardless of whether dor q

i8 ept constant while differentiating.! Insertion of these expressions inte
Eqne. (4.7} gives a group velocity with ‘ae magnitude (4. 6) and with a direcuon
miking an angle of 4 with the x-axie.




It should be noted that surfaces of cqual phase are not necessarily surfaces

of equal arrival time, If a K independent of ¢ can be chosen in Eqn. (3.11)
such that the resulting value of R-r(w, #)is equal tc v, (u, # ) tor some time .,
this would be the case. However, this would require

‘(‘;—0" 5ﬁn(w,9)vg(m,0)‘ =0

which would in turn require that

PR k(w,8) '
35; )k(w,gk) do ‘\ )

which is clearly not true in general. Two circumstances where the above
would be satisfied are: (a) no winds (k independent of &); and (b), k{w, A }
directly proportional to v. The latter, as we show in section VII, occurs for
the case of an isothermal atmosphere with constant winds.

0
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V. EIGENFUNCTIONS AND EIGENVALUES

For all practical purposes, the only modes of intere st which may ose attained
from Eqn. (3.3) are those for which Y,z @k, 6),) i zero atz-0. An additional
mode apparently exists where 1(z,)- ¢ which apparently represents a disturb-
ance traveling in the direction of the ambient wind at aititude z, with the same
velocity as the wind. Omne may discard this mode if he is interested only in
modes which travel with speeds of the order of the sound speed at the ground.

(We assume the wind speeds are significantly less than the rpeed of sound.)

If k - ky(w, &) is a root of the equation Y, (9) - 0, then the corregponding pair of
functions, Z, (z) and Y,(2), may be considered as an eigenfunction pair of the
~oupled differential equations (or residual equations).

dYidz - AY - Ay Z - 0 (5. 1a)
dZ/dz + AZ - A, ¥ = 0 (5. 1b)

and may be denoted by the symbols Z (z, «, &) and Y, @« 9K). The root k, (w. 0)
may be considered as an eigenvalue. The problem of finding the roots of Egn.

(3.3) may therefore be considered as that of finding the eigenvalues of Eqns.
{5.1}.

In accordance with our rernarks in section Ill, we corsider only those eigen~
functiong which corresovond to real eigenvalues. Thus, A must both
be real. This implies that any set of solutions of Eqns. }5 l) whxch satisfr the
lower boundary condition of Y =0atz - 0 must be real functions of z, apart from
a multiplicative constant which may be complex., Thus, the upper boundary
conditions cannot te satisfivd if the phase of ¢ in ¥gn. (2.14) is 0 or ». The
phase of a must be =2, This proves that any real eigenvalue k{w, 9,) satisfies
the condition

wy e BL) ey th, B

where o, and o, are given by Eqns. (2.1b). The nature oi such a constraint

is best demonstrated by plotting the functions «; and w,. In fxgure 1, these,

as well as », are plotted versus k for fixed angle between k and v, . Numerical

values used are such that in {a), k. % -(! Jcnk. and in (b), k. v = -l Yicyk , For
nmf:lxczty, k is plotted in units of ! Hy and « is plotted in umta 0. :, Hn., where
H,, is the scale keight “uﬂx* Figurg Il may be conriderea as reprereniing general-
1zations o ‘_’he diagnoetic diigr,_am for a quiescent isothermal atmosphere given

by Eckart :
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VI, INTEGRAL THECREMS

A mumber of theorems may le derived relating the variation of the eigenvalues
and eigenfunc tions of Eqns. (5. 1) to small variations in the atmospheric sound
speed and wind speed profile. and to small variations in tke parameters » ana
6 . These theorems all follow from a general thuorem which we now prove. -

We assume that Y and Z are a set of eigenfunctions of Eqns. (5.1) for given

A(z), A3 (2), and Ay, (2) . Let 34, 5A;,. and 54;; be small variations in the
quantities A, A,,, &nd A, . Then let Z + 8Z, Y +5Y be solutions of Eqns. (5.1)

when A, A, and A;; are replaced by A +5A, A}y + 54y and Ay + 54, . (It is not
n:cessarily assumad that Z + 62, Y+ §Yare a set of eignfunctions, but it is assumed
that they conform to the upper boundary condition.) To {irst order, the variations .
87, 3Y will then satisfy the two coupled inhomogeneous equations

d(8Y)/dz ~ A(BY) ~ Ay (82 ~ (BAYY +(54,))2 (6.1a)
.1b
d(82)/dz + A(82) = A15(8Y) = ~(BA)Z + (BA; )Y (6. 10)

It follows directly from Eqns. (5.1) and (6. 1) that
.
—d— ;Y(az) - Z(“)s = (8A12)Y2 - (8A21)22 - 2(5A)YZ (6.2)
z

The desired theorem is now obtained by integrating both sides of the above
equation with respect to z from ¢ to «, giving

{z (b‘Y)} 220 - ] {(sAu)Yz - (5Ay22 - 2(8A)YZ} dz (6.3)

o

where use has been made of the fact that both Y and Z approach zero as z ap-
proaches infinity and of the fact thatY-0 atz-¢.

Under the most general variation we will consider, 2 vk w and 6, go to

c? + 5¢%, etc. The corresponding variations 54, 5A,,. 5A;; to first order may
be found from Eqns. (2.9-2. i2)to be

3A - -(A‘cz)&cz - (Zczl"l (d da) (8:2) (6. 4)
BApy - (edied) 8 - (pet) Widn (8 - 20k 6v

<20k v 08k « 2086 2 Qiv sin (8, - 8,) 88, (6.5
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5Ay = <4 82 4 kYK sy + 213 073 sk
6.¢
- 2k%/03) 50 - @K3v/03) sin (8, - 6,) 56, 6.4

where 0, (z) is the angle between v and the x-axis.

Ingertion of expressions (6.4-6.6) into (6.3) w:th an additional integration by
parts to eliminate terms with (d/dz) 5 ¢ gives

{Z(SY)}Z,O - =L bk r B+ 3G « A - B, .7
where
L - 2/ ~%ﬁ(I.;/k)Y2 + kw9‘322§" dz (6. 8)
o B

I, = z/ 39 Y2 & k2/03 zzg dz (6.9)
(>

R

I, - % / v sin (8 - ) ;n v (sz"Q3)Zz§ dz (6.10)
[+

\, - / :[) gloet -l cz] NG (RS2 (6. 11)
[+)

2
. {(23 i - g c"] YZ" idc?)  dz

i

\, 2 [ {nvi'.(kzn‘)z-‘} K8y dz

o
In obtaining the expression for \,.use has been made of the diffcrential cqua-
tions (5. 1) to eliminate terms in 47 4z and 4y dz .

-17-




We may now apply Eqn. (6.7) to a number of special casus:

1. Expression for dY/dk at z=0.

We consider &w, 86, 5c2,8¢  as being zero. Then (6.7) gives

(OY/9k), g = - 1,/Z(0) {6.13)
The factor Q which appears in Eqn. (3.7) is therefore

Q= -Z(z)Z 0/ [Q(z) Iy} {6.14)

2. Expressions for dk/dw and dk/9A4, .

The variation of k with o for a given normal mode and for fixed f}; may be
obtained from (6. 7) by letting (6Y),_g = 0. Thus

In a similar manner, one finds
/96, = 13/1 (€. 16)

3. Expression for group velocity.

Insertion of Eqns. (6.15) and (6. 16) into Eqns. (4.7) gives expressions
for the components of the group velocity. After some manipulation, one
may write the resulting two equations as a siigle vector equation in the

form
ARV PZIRRE B (6.17)
where
Vo v 271 / iy . aiadz?i ¢ (6.18)
[+]
One shculd note that, in the event v is constant, < ¢ sV

av

4. Effaoct of Atmospheric Perturbations onk .

It the eienfunctionsZ and Y and correspondiny eigenvalue «, for given #
and w awvd for a given model atmosphere, are known, then the eff~ct on the
eigenvalue k of varying the atmospheric souni and wind profiles is given
to first order by

-18-




Sk = (Al - ‘\Z)/ll (6. 19)

The consequences of this equation are discussed in section VIIIL,
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VII. PROPAGATION IN AN ISOTHERMAL ATMOSPHERE
WITH CONSTANT WINDS

Tre simplest model atmosphere including winds is one with a consta.it temper-
ature and a constant wind velocity. For such an atmosphere, the upper layer
with constant sound speed ¢, and wind velocity v, coincides with the entire at-
mosphere. The solutions of Eqns. (5. 1) which satisfy the upper boundary con-
dition are of the forin (2.14}. The lower boundary condition requires

ia = -A = (I —y/2)gf‘C,2,, (7.1)

It follows that there is only one eigenvalue; it being given by

(7. 2)
k = w/ [cm + Vg cos (B - ovm)]
The corresponding functions Zand Y rnay be taken as
z - o Am? (7. 3a)
Y = 0 {7.30)
The relationship (3. 4) between 6 and 6, becomes
Ve Sin (0 - 8,0)
tan (6 ~ 0) = 7. 4)
€ * Vg €OS (Gk - va)
or {omitting the subscript m)
csin(9, ~ B = vsin(d~ 0> (7.5)
The corresponding expression for p(w. ) is readily found to be
g - _ (w/c) (7.6)
11 = (vic)? sind (8 - ) L2, (v/c)cos (8 - f,)
and the group velocity is therefore
v‘ - (C.’_VZ srm2 (H—Hv))l‘? . xcos(r’?»(ﬁy) (7.7)

which is independent of frequency. The significance of the above vquatiun is

much clearer if it is expressed in terms of v - v costPod)and v .
g M (n = B0 With a iittle manipulation, Eqn. (7.7) then assumecs the
form

vy - ol . ,‘;2 e (7. 8)
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which shows, as might well be expected, that the propagation is equivalent to
that from a source moving with velocity v in a medium with sound speed c.
The surfaces of equal arrival time are circles whose centers are displaced
from the origin in the direction of the ambient wind. The ratio of the radius
of any circle to the distance of its center from the origin is ¢/v. Since S(w, &

is directly pro-.ortional to », the surfaces of constant phase will coincide with
surfaces of egual arrival time,

S2)-




VIII. PERTURBATION MET!OD

An approximate method of incorporating winds into a theory of acoustic-gravity
wave propagation is a perturbation method based on Eqn. (6.19), The unper-
turbed atmosphere is taken as one in which v=0 . The eigenvalues are then
approximately given (to first order inv) by ‘

k(w 0 - k( () - q!(w)coqok - qy(w)sin ek (8.1)
where q, and qy are components of the vector
L
/ Ha%2 /6l 27+ w32 vdz
1lw) = — (8. 2)

o d

72 dz

The first tern k%) in Eqn. (8.1) is the unperturbed eigenvalue. The second
and third terms are the {irst crder correction tok(w, 6;) and are derived from
Eqn. {0.19) with 5vreplaced by v. The quantities Zand Y in Eqn. (8.2) are
the zercth order eigenfunctions and are computed assuming there are no winds.
The cuantities k0w), qg(w) » and gy («) will be independent of 6y but will depend
on the mode index n as well as «.

The apparent uncoupling between th. ¢ znd . dependences in Eqr. (8.1) makes
the resuiting formulas for S(w, ) and the surfaces of constant phase relatively
s:mple. To first order in q./k% and 9 ¥, one has

Ble, B - &0 fw) = g (w) cos H o~ gy (<) sin & (8.3)

The surfaces of constant phase {see Eqn. (3.11) ) to the same order of approx-
i'nation are given by the equation
. a2l 2,4, _ 0202 . k202
{: K, &g Y Kq, %) K°

(8. 4)
where K is a constarit and 5 - RT""" . ¥ - Ry sin#. The surfaces are there-
fire upproximately circler whase centers are displaced from the origin in the

ditaction of ¢ and which are characterized by the number (& 0 which gives
the ratio of the distance of each circle's center from the origin to its radius.
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The group velocity may be readily computed from Eqns. (4. 6) and (8.3). To
first ordc - one finds

vg v-g () + ivg (w)* 2 [q‘ (@) cos (1 + q); (w) sin ()] (8.5)

where v is the zero order group velocity, or (9k%d w)~!, while q, and g are
the derivatives with respect to wof q, and q, .

The surfaces of constart arrival time are circles to the same degree of approx-
imation

[X - (vg)z qx' (] 2 4 [y - (\.2)2 qy’r t]Z - (vg)Z [2 (H- 6)

The center of the circle moves with a velocity (vg 2 3q/ A while the waves move
out from the center with a velocity +J.

To demonstrate the utility of the method outlined above, we apply it to the
computation of the effects of winds in a realistic case. The wind profile is
taken as measured by Diamond10 above White Sands and as exhibited in figure
2 of his paper. The cited figure indicates that north-south components may be
neglected. Taking x to be in the eastward direction, we therefore have q. ¢ .

In the computation of q we rely on the rumerical computations of Pfeffer and
Zarichnys. In particular, we use the plots of kinetic energy versus altitude
for the 52 km model as given by figure %a in their paper for periods of 48, 87,
225, and 3i5 seconds. The kinetic energy tiiey tabulate shouid be proportional
(as regards variation with z ) to the quantity

4
-

i A
l‘k\) l,"“t 7z~ . PR |

2
<

in the notation used here. For low frequencics and for the 52 km model atmos-
phere used by Pfeffer and Zarichny, it apvears that one may safely neglect the
second terir :n the above. Thus the quantity ¢/, is approximately

Kk \: RF

G (8. 7)
(NE o te

Curves m!‘v“’ and iV

Zarichuy's paper,

verius period are given in figure 4 of Pleffer and




Using Eqn. (8.7). we have computed q(w) - 4g &, for the four frequencies for
which KE is plotted by Pfeffer and Zarichny. A curve fitted to these values
is given in figure 2a. A pood fit to this curve ovar the frequency range of
interest is

g (wd - <275 1074 143

where « 18 in radians/sec and q, is in meter~i, Thus the magnitude of .q,/dw
increases slowly with increasing frequency.

In figure Zb we plot the factor (vg)2 qy versus period. Curves obtained using
Egn. {8.5) of group velecity versns pericd are given for various values of 9
in figure 3. It gshould be noted that the principal effect of winds in this partic-
ular example is to increase the group velicity for downwind propagation and
decrease it for upwind propagation by an increment of roughiy 15 meter/sec.
However, the winds also strongly affect the dispersion of the wave. Since the
group velccity curve for dow:.wind propagation is flatter than that for upwind
propagation, the signal ocbserved to the east (upwind) will be more dispersed
than that observed to the west (downwind).
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IX. CONCILUDING REMARKS

The theory outlined in this paper gives a method whereby the effects of winds
may be readily incopcrated into the siudy of the propagation of acoustic-gravity
waves, Furthermore, the example treat.d in the previous section indicates
that the consideration of winds may L - nec:ssary in a quantitative interpreta-
tion of actiual microbarograms.

The priancipal complicaticn introduced by vinds is that they transform the at-
mosphere into an anis>*repic medium. Tne magnitude of the horizontal wave
number vector {which acts as an index of refraction) depends on the vector's
direction as well as on freuency. This would appear to make the computation
of the phasc and group velocities more difficult by an order of magnitude. How-
ever, the perturbation theory developed here (which takes advantage of the small
ratio of wind velocity to sound speed) requires only the computation of two func-
tions a.(, and g, in addition to the wind-independent wave number kD .
With th.s sirpiification the consideration of winds becomes feasible,

The pe=turbation methed is but one application of the intcgral theorems developedt
in this paper. These show promise of being useful in the numerical calculation
of phase and group velocities as well as in the development of approximate
methods of solving the residual equations.

The question ncw remains as to whether or not a model atmosphere with winds
independent of horizontal cocrdinates is a satisfactory model for the actual
atmosplrere, Certainly, it should be more satisfactory than a .nodel atrnosphere
witheut s :nds, However, a glance at the flow patterns of the atmospheric winds
on a glotal scale given in the Handbook of Goophysicslb indicates that some
modificaton of the theory may be required to take into account the curvature of
the streamlines of th= ambient winds, Such a modification should be necessary
for prop.gation over hcrizontal paths of 7, 000 km or greater, The present
theory n ay be readily extended to cover such situations by using the mathemat-
ical tectniques discussed by the author!? 1na previous theory of wave propaga-
tion 1n an almost-stratified medium. This extension wiil be given n a later
article,




9.

10,

11.

i2,

13.

14,

15,

16.

17,

18,

19.

X. REFERENCES

Hunt, J. N., R. Palmer, and W. Penney, Phil, Trans. Roy. Soc.
London A252, 275 (1960).

Weston, V. H., Can. J. Bys. 39, 993 (1961); 40, 431 (1962).
Pfeffer, R. L., and J. Zarichny, J. Atmos. Sci, 19, 256 {1962).
Donn, W. L., R, L. Heffer, and M. Ewing, Science 139, 307 {1963).
Pfeffer, R. L., and J. Zarichny, Geofis, Pura Appl. 55, 175 (1963).
Press, F., and D, Harkrider, J. Geophys. Res. 67, 3889 (1962).
Yamamoto, R., J. Meteor, Soc. Japan 35, 288 (1957).

Pekeris, C. L., Phys. Rev. 73, 145 (19438).

Scorer, R. S., Proc. Roy. Soc, (London) A201, 137 (1950).
Diamond, M., J. Geophys. Res, 6_3, 3459 (1963).

Weston, V. H., and D, B. vanHulsteyn, Can. J. Phys. 40, 797 (1962).
Pridmore-Brown, D. C., J. Acoust. Soc. Am. 34, 438 (1962),

Eckart, C,, Hydrodynamics of Oceans and Atmospheres, Pergamon
Press, New York (1960), Chapter XIV,

Pierce, A. D,, J. Acoust. Soc. Am. 35, 1798 (1963).
Haskell, N., J. Appl. Phys. 22, 157 (1951).
Eckart, C., Rev. Mod. Phys, _7_4_0_. 399 (1948),

Eckart, C,, Hydrodynamics of Oceans and Atmospheres, Pergarncn
Press, New York (1960), p. 108,

U. S. Air Force, Handbook of Geophysics, Macmillan Company, New
York (1960), Figs. 5-26 through 5-39,

Pierce, A, D,, Avco Corporatior, Wilmington, Mass., AFCRL-64-526
(31 July 1964},

-23-




LIST G-A

CODE ORGANIZATION NO.OF COPIES
AF 2 A. U. Library
Maxwell AFB, Ala. 1
AF 12 AWS (AWSSS/TIFD)
Scott AFB, Il. ' 1
AF 20 Hq. AFCRL, OAR (CRTPM)
I.. G. Hansconi Field
Bedford, Mass. 01731 1
AF 22 Hq. AFCRL, OAR (CRMXR,

Mr. John Marple)
L. G. Hanscom Field
Bedford, Mass. 01731 1

AF 23 Hq. AFCRL, OAR |CRMXRA) Stop 39
I.. G. Hanscom Field
Bedford, Mass. 01731 20

AF 28 ESD (ESRDG)
L. G. Hanscoam Fleld
Bedford, Mass. 01731 1

AF 33 ACIC (ACDEL-T7)
Sec »nd and Arsenal
At, Louls i8, \o. 1

AF 40 Systems Engineering Group
Deputy for Systems Engineering
Directorate ot Technical Engineering
and Specifications (SEPRR)
W-P AFB, Ohio 45433 !

AF 43 Institute of Tecknology Labrary
MCLI-LIB., Bldg. 125, Area B
W-P AFR, Ohiao !

AL 48 Hg. Y. S50 Aur Force
AFBSA, USAF Scientitic Advisory Board
Washungion 2~ Do C. 1




LiST G-A (Cont'd)

CODE ORGANIZATION NO. OF COPIES
AF 49 AFOSR. SRIL
Washington 25, D. C. 1
Ar 51 Hq. USAF (AFRST) .
Washington 25, D. C. 1
AF 58 ARL - AROCL
Library AFL 2292, Bldg. 450
W-P AFEB, Ohic 1
AF 64 Hq. AFCRL, OAR

Mr. M. B. Gilbert, CRTIES
i. G. Hanscom Field

Bea’~rd, Mass. 01731 1
AF 151 Hq. OAR - RRY

ATTN: Col. James A. Fava

Bldg. T-D

4th St. & Independence Ave.

Washington 25, D. C. 1
AR 7 Director

U. S. Armyv Electronics Labs.

U. S. Army Electronics Command

ATTN: AMSEL-RD-ADT™

Ft. Monmouth, N. J. i

AR 13 Director
U. S. Army Electronics Labs.
U. S. Army Electronics Command
ATTN: AMSEL-RD-ADT
Ft. Monmouth, N. J. |

AR5 Army Research Office
Envi-onmental Research Division
3045 Columbia Pike
Arlington 4, Va. l

AR 16 Office of the Chiet of
Research & Development
Dept. of the Army
The Pentagon
Washington 25, D. C. 1

-310.-




CODE

F 50

F 97

G 47

G Al

LIST G-A (Cont'd)

ORGANIZATION

Defence Research Member
Canadian Joint Staff

2450 Mass. Ave,, N, W,
Washingten 8, D. C.

Scientific Information Officer
British Defence Staff<
Defence Research Statf
British Embassy

3100 Mass. Ave., N. W,
Washington 8, D. C.

National Bureau of Standards
Boulder Laboratories
ATTN: Librarian

Boulder, Colo.

Defense Documentation Cente: (DDC)
Cameron Station
Alexandria, Va. 22314

Documents Expediting Project (UNIT X)
Library of Congress
Washington 25, D. C.

National Bureau of Standards Library
Rm. 301, Northwest Bldg.

Conn. Ave. & Van Ness St., N.w,
Washington 25, D. C.

Office of Secretarv of Defense
DDOR & E, Technical Library
Washington 25, D, C.

Libraryv of Public Documents
Government Printing Office
Washington 25, D, C,

Science Advasor
Dt‘pl. of State
Washington 25, D, C.

NO. OF COPIES

20

-




LIST G-A (Cont'd)

CODE ORGANIZATION NO. OF COPIES
G 52 Director of Meteorological Research
U. S. Weather Bureau
Washington 25, D. C, l
G 53 U. S. Weather Bureau
ATTN: Library
Washington 25, D. C. 1
G ob Scientific & Technical Information

ATTN: NASA Representati.e
P. O. Box 5700
Bethesda, Md. 1

G 67 Central Intelligence Agency
ATTN: Documents Div.
2430 E St., N. W,
Washington 25, D. C. 1

7 The Rand Corp.
ATTN: Director, USAF Project RAND
1700 Main St.
Santa Monica, Calif.
Thru A. F. Lisison Office 1

18 Dr. William W. Kellogg
National Center for Atmaspheric Research
Boulder, Colo. 1

I 40 Institute of Aerospace Sciences, Inc.
2 East ¢4th St,
New Tork 21 N. Y. 1

I 73 Aerospace Corp.
ATTN: Library Tech, Documuats Group
P. O. Box 95085
Los Angeles 45, Calat. 2

-

[ 40 Anerican Meteorological Soqrety
ATTN: Mr. Malcolm Rigby
P. O. Box |713%
Wastington 13, D. C. 1




CODE

N6

N 16

N 19

U 10

U3

U 40

U 56

LIST G-A (Cont'd)

ORGANIZATION

Technical Reports Librarian
U. 3. Naval Postgraduate School
Monterey, Calif.

ONR (Gophysics Code N-416)
Office of Naval Research
Washington 25, D. C.

Director

U. S. Naval Research Laboratory
Code 2027

Washington 25, D. C,

University of Alaska
Geophysical Institute
ATTN: Library

P. O. Box 938
College, Alaska

University of California

Institute of Geophysics

ATTN: Professor Clarence Palmer
Los Angeles 24, Calif.

University of California
Dept. Of Physics

ATTN: Dr. Joserh Kaplan
Los Angeles 24, Calif.

Cniversity of Chicago
Dept. of Meteorology
ATTN: Dr. David Fultz
Chicago, Ql.

Harvard College Observatory
ATTN: Prof. Fred L. Whipple
60 Garden St.

Cambridge 38, Mass.

NO. OF CCPIES




l._L_’:_)T G-A (Concl'd)

CODE ORGANIZATION NO. OF COPIES

U 136 The University of Michigan
Institute of Science & Technology
ATTN: BAMIRAC Litrary
P. O. Box 618
Ann Arbor, Mich, ' 1

Hq. AFCRL, OAR (CRJW, E. F. Liff
I.. G. Hanscom Field

Bedford, Mass. 01721 11
Central Files 1
Resecarch Library (+1 reproducible) 212

-34-




L R R I I P A A i T I I e S,

e ST e et e s c s e s T m e s e r e maan -

aIrASSVTINA

uonIdf(os X1 U1 Al
Iderd ‘qQ ueity It
loH: -(829)o1 4V 1eduo) 1]
20Le9L "ON Wsv]
2692 "ox vaford °p
uotieledoad siey b
nsrode drsaydscwgy 4
CERT-XNRI TR TP 51 Bd
uonededoad purog g

AQITIISSVIOND

AJIAISSVIOND

AATAISSVIIOND

Y1 ¥F UOTIIIIIP Jwes Y} Ut AJ1Ie882I3u JOU S T Jeyl
pue Aduanbazj uo se [{am se uoljeSedoid jo uordaatp uo
vpuadap apow jrwiou uaatd e ug Aruanbaaj uaaiB e 10j
£3130138 dnnad [TIUOZIIOY IATIIITLS AN ey) UnNOYS st §]
*a1aydsowie ayy ut sasew LAjtaeaf-donuenode jo sapnyyd
-u1e pue uoTx1adsIp Iy} UO SPULW [LJUCZIION JO $313))2
ayy Jo Apnis ayy sinusad yityw pajuasaad sy A1oayy v

1zodas payrssepoup

safled pp iz P9-THDAV I3quny roday
IYUINIG  ssey .ﬂhQuVUQ ..Ouhﬁnﬂhzﬂ\— Yylrzeasay
afpraquie) 104 ayy “adiatd Qg ueity AQ JUIHL
"SOINL1V QIIJILVYIS-UNIM ONV-TuNLVHIANIL V
NI STAVM ALIAVYO-DIISNODVY 4O NOILVOVAOUd
rssepy ‘uorBunun g ‘uorsyayg waudopasag

pasuespy pue yd>ieasay ‘uonjesodio) 0day

. *swesBoseqordnu [ejuawysedxa jo
uonjeiazd1aiut aanyejrjuenb Aue ut pazapisuod 3q pinoys
Layy 1e) pue fapow [ewlou ayy jo uctssadstp Iyl Jazpe
Aiqerdaazdde ues spuiw eyl saedtput duiexa dustiral

© 03 poyiaui ayy jo uotjedtyddy ‘uoisiadsip uo 2333552
putw jo uoneyndwoy ayy 10j poyIdtu uotseqinyiad e jo
wawedofasap ayl o3 patjdde Afjuanhasgns st suo pue adid
~ut1d [PUNTIPIIRA © 1UO3] PIATIIP Jse swatoay) [vadayur
[rjasn jn 1aQUINU Y *J01>3% 12GUINU I\EBW [EUO7IIOoY

e L .k R R N . £ I I A A I

cmcsssnsdececsr v istenancrrcnanca s mc s mennancmnr -

.
.
.
L]
[]
+
.
.
.
[
L
L

QITIISSVTIDNN

untiIed A vl CAX

33131 ‘g uclly ‘111

16uy ~(H79)6 1 AV VInnued ‘It

202€9L TON XS]

L9 "oN paford |
uonjededozd asey °p
s313sn00T Jaydscunyy vy
S3\Twn U_CCl’huﬂu -N
uonededoad purce o

UITIISSVIONA

AITLISSYTIOND

AJTSISSVTIIOND

Y1 S€ UOTIIILP JLWTS Iy) UF A{ISEESIIIU J0U &1 31 jey:
pue £3uanhas} uo se [[aw se uctjededoad jo uordastp uo
spuadap apow feuwsrou uaatd e Ut £ouanbaaj uaard v toj
A11201a1 drosd jejuozisoy 311133558 Y3 18Y1 UNOYS AT b+ 4
*a1aydsounye 3y ut sasew Atavad-odnenode 3o saprynpd
-ute pue uots1ads1p Ay) UO SPULW [RIUOZTIOY jU 5123}F3
Y1 Jo Apnys 3y 31w Iad YOiw PIUIsaad 81 K10y v

1x0daz patjissepouf

rsaded pr 1L - r9-TUDIV J3quiny 110day
PPHUIG “ssely ‘p1ojpag ‘satiolwioqe] ydivasay
a3priquie) 32104 1Ty 3d1atd 'Q uwily 4G TYIHA
"SONLV QITJIIVHIS-ONIM ANV-TUALIVYIIINTL ¥
NI STAVM ALIAVED-DIISN0IV 40 NOIIVOVIOud
*essely ‘uoiBurnity ‘uotsiat] juawdolaag

PIdUmAPY PUE YIieasdy ‘vorjesodind oday

*
[
.
)
[
[}
]
'
L]
1
.
.
¢
L]
.
[]
[l
1
L]
L]
.
[
[
L]
[
.
.
.

csewessdmcnesnna

.

*swesfoseqnidnu [euawtsadxa jo
uone12:d123u1 a n1eitiuenh AU Ul Pasapisudd 3G pIMoYs
£2y3 1oy pur sapows [PlLIOL 3Y) JO Inysaadeip Iy; 1dTe
Algetdasdde ued sputm jey; sojeatnut ajdwiexs d1isijeas

€ 03 poyjaus ay) 10 uorsedtiddy ‘uctezadsip uo 8133553
putw jo conendwo: a3yl 40) poyldw uoneqinizad e jo
watudogavap ayy oy patidde Ajuanbaeqns st suo pue a(drd
-utad [PUOTIBTIRA B WIOZ} PIAIIIP € swIi0ay) [ealajus
INJosh jn 12QUWTU Yy “20}373) I3QUWNU 2 ven [PIUD2ZII0Y

S T e N I R R R




